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The vibrational excitation of CJBr scattering from graphite has been studied using mixed quantiassical
methods. A previously investigated 2D model for the intramolecular degrees of freedoky fBaMarkovig

N. Chem. Phys2002 285 233] has been extended to 3D including all vibrations;adymmetry, improving

the dynamical description of the umbrella mode. We investigate the details of the excitation process for a
few selected initial conditions as well as the general effect of surface temperature for ensembles of randomly
sampled trajectories. Quantum results are obtained from 3D wave packet propagations and calculations based
on the time-dependent Gauddermite discrete variable representation method. When the quantum data are
compared with classical results it is confirmed that quantization of the internal degrees of freedom does
indeed have a very small effect for the present system. Considering vibrational excitation from the ground
state, almost perfect agreement between quantum and classical calculations is found, provided that the classical
trajectories are initialized without vibrational energy.

1. Introduction out wave packet calculations to be compared with the corre-
. . ) o sponding classical treatment. One of the main conclusions was
Classical molecular dynamics (MD) simulation is & Very i the classical excitation of an initially nonvibrating molecule
powerful tool within the field of physical chemistry and chemical ;55 aimost identical to the quantum dynamical excitation from
physics. The technique can provide information about hard-to- e yiprational ground state. Comparison of the 2D results with
measure dynamical details as well as predictions of averageds|.dimensional trajectory results (and also with experimental
experimental quantities. Both these aspects are illustrated in OUlata) was, however, somewhat hampered by the artificial
previous work on the scattering of xenon atérmasd large water dynamical constraints invoked.
clusters from graphite. These calculations involve many atoms |, the present paper those constraints are relaxed. In addition
and long propagation times and would be very hard to carry 4 the G-Br stretch ¢s) and the umbrella motionvg) we also
out using more sophisticated dynamical methods. Fortunately,jncjude the G-F stretch ¢1). Thus all three modes ofy
we believe Fhat a classical mgchgnlcal description is adequatesymmetry are considered. The three modes have quite different
for the studied processes, which is also supported by the good, iy ational frequencies, 352{), 762(75), and 1085¢;) cm
agreement Wlth e>_(per|mental resu_lts. We have also '”‘_’eSt'gatedrespectively, and quantum effects are therefore expected to
vibrational excitation of polyatomic molecules scattering from jnfiuence them differently. The effect of the previously used
hot graphite surfaces® Due to the large energy gaps between ¢qnstraints on the classical dynamics is investigated first. The
vibrational energy levels one may expect quantum effects 1o ¢qjisional dynamics for a few selected initial geometries are
be important for such processes, in particular for systems with g gjied in detail on a cold surface using both classical and wave

high-frequency vib_rations. _ packet methods. Some of these orientations only excitaithe
In ref 4 we obtained good agreement between experimentalviprations due to symmetry reasons and therefore correspond
and simulated results for vibrational excitation of 8F to a full-dimensional treatment of the intramolecular dynamics.

scattering from graphite for collision energies between 0.6 and The quantum dynamical problem is also reformulated using the
3.5 eV and surface temperatures between 500 and 1200 K. Duaime-dependent Gaussiermite discrete variable representation
to the rather approximate potentials used and average charactemethod (TDGH-DVR), also known as quantum dressed classical
of the experimental measurements the agreement only indicatesnechanicg; 16 replacing the reduced dimensionality treatment
that a classical treatment is valid. The fact that the system is with a mixed quantum/classical description of the intramolecular
heavy and the frequencies rather low supports the use of classicatiynamics. The wave packet and classical models are finally used
mechanics. The observed sensitivity of the vibrational excitation to compute the surface temperature dependence of the vibra-
to the methods of initialization and analysis, on the other hand, tional excitation.

indicate that quantum effects still may play a role. In a recent  The dynamical model, the potentials used, and the theoretical
paper we studied the system using a reduced dimensionalitymethods are described in section 2. The results are presented
treatment including the €Br stretch and the GFumbrella in section 3, and the main conclusions are finally summarized
motion® Within this 2D approximation we could afford to carry  in section 4.
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Hamiltonian for the surface atoms bys,w. The rotational
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Hamiltonian is expressed as
L2 L2 L/

+2L+ (6)

Hy==— =

Yy ot 20, 2, 2,

. . ; wherelyq are the principal moments of inertia which depend
2 = on the quantum coordinates z, andy. The body-fixed angular

. — _ _ ) momenta,L,, can be expressed in terms of the Euler angles
Figure 1. Definition of the coordinates used in the reduced dimen- 5nq conjugate momenta

sionality calculations.

carbon atoms in one of the five graphite sheets is given by L= =P, CSCO cosy + py siny + Py cotd cosy

Brenner’s empirical functiof’ while the interlayer potential is L, =p, csch siny + p, cosy — p, cot siny
. . y ¢ 0 x

modeled as a sum of Morse potentials. The bottom layer is held

fixed, and the atoms in the next layer are subject to stochastic

and friction forces in order to keep the graphite at a specified

temperature. The gasurface potential consists of a sum of e gyantum part of the problem is solved by propagating the
_Lennard-Jones terms y|eId|_ng a blndln_g energy of 0.27 eV. The ¢gution to the time-dependent Sétiger equation
intramolecular CEBr potential is described in terms of Morse
stretch and attenuated harmonic bend and nonbonded interac- L W(Z, 2, Y, 1) .

tions. The intramolecular potential reproduces the experimental IhT = HQ‘P(zl, Z, Y, 1) (8)
normal mode frequencieg’; = 1084.87, = 762.0,v3 = 352.1,

V4= 1208.87)5 = 547.4,vs = 302.7 cm, where the first three  where all terms with explicit dependence on the quantum
modes are nondegeneratesgsymmetry and the last three are  yariables are included iflo

doubly degenerate.

2.1. Reduced Dimensionality Wave Packet Calculations.
The present reduced dimensionality calculations are carried out
in terms of the distance between Br and the center of mass ofThe simultaneous propagation of the classical equations of
CF; (z), the distance between C and the plane of the F atoms motion for translation, rotation, and the motion of the surface
(), and the distance from the BC axis to the F atomsyj, atoms is carried out using an effective (mean-field) Hamiltonian
see Figure 1. As in our previous work with the umbrella médel,
Cs, symmetry is preserved, but now also the-Edistance is
allowed to change.

The intramolecular Hamiltonian in these coordinates is given The initial wave packet (corresponding to the vibrational ground
by!8 state in the present study) is an eigenfunction to the Hamiltonian

in eq 1 obtained by expanding the vibrational wave function in

)
L,=p,

Ho = Hip T Hio Vs C)]

Ho = [W|HIWDO (10)

N A2 2 R 9 K & a product of Morse eigenfunctions and solving the corresponding
Hyip = — Z 2 ﬂ_z - Z 72 +V(z,2,,y) (1) eigenvalue problem. The solution to eq 8 is propagated in time
102 20z, 38 using the split-operator methBdwith the kinetic energy
where operators evaluated using the fast Fourier transform techique.
A modest grid consisting of 2& 28 x 24 points for &, 2, y)
Mg, (Me + 3m) was found to be adequate for this problem. The classical degrees
Wy=—m 2 of freedom were propagated using a time step of 0.3 fs, while
Mg, + M + 3me 0.1 fs was used for the quantum propagation. The molecule was
3mem placed with its center of mass 9.5 A from the surface with the
Up= 3) initial velocity vector (usually corresponding to a translational
me + 3me energy of 2.0 eV) in the negative normal direction.
1y = 3m, 4) The results of primary interest are the total vibrational energy

This Hamiltonian exactly reproduces the nondegenerate normal Evip = QW IHyp WL (11)

mode frequencies, in contrast to the 2D Hamiltonian used in
our previous studywhich overestimated the umbrella frequency,
vy, by ca. 7%. The translation and rotation of the molecule as

and its partitioning between the three vibrational modes (
V2, V1)

well as the motion of the surface atoms are treated classically. — ‘ 5
The total Hamiltonian thus takes the form Euin(v2) ZE"O'OJZ Piik (12)
H= ﬁ(sz + P2+ PA+H,(z,2,y) + Ein(v2) = ZEo,j,oZ Piik (13)
] B
ol 0.1 Py Po Py 2 Z03) + Ein(v1) = ZEO,OkzPi,j,k (14)
VX, Y. 2,20, 2, ¥, ¢, 0, x.{ag) + Hgf{ad. {pd) (5) 7

whereM is the mass of the molecul¥, Y, Z specifies its center
of mass, an@, 6, y are Euler angles describing its orientation.
The gas-surface potential is denoted M, and the classical

assuming approximate separability which makes an assignment
to different modes possible. The summations are over 100
projections onto vibrational eigenstatd;, and using the
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corresponding eigenvaluel;;k, up to a maximum energy of  factor, Reyy, its value is irrelevant. In our implementation we
689 meV. Due to vib-rot coupling it is necessary to compute  will furthermore set Ré\(t) = 0 and keep it zero which implies
average vibrational energies before and after the scattering eventthat also ImAy is kept constant?21
i.e., when the molecule is approaching (leaving) the surface but The total number of grid points is given by
before (after) the gassurface interaction is significant.
The gquantum results obtained using the wave packet method N
have been compared to the corresponding results from classical Niot = ﬂ”k (20)
trajectories using the same reduced dimensionality treatment. =
The mode-resolved energies are in the classical case obtained .
by projecting the vibrational velocity vector onto the normal whergN s the numper of quantum degrges of freedom. The
mode eigenvectors. The kinetic energy in the normal modes amplitudes at the grid points &t= 0 are given by
are averaged over time, and the mode-resolved vibrational K
energy is finally approximated as twice the kinetic average, h\w4 N 1 N 9, (Qu)
which is a good approximation for the small excitations typical dil,iz,...iN(O) = 5 (ﬂlm Ad ﬂ (21)
for the present system. = - \/TI*
2.2. TDGH-DVR Calculations. The quantum dressed clas-
sical mechanics calculations are built around the full-dimen- \hereg,(Q) is a vibrational eigenfunction andi* a normaliza-
sional classical trajectory program used in ref 4. We will tjon factor
sometimes refer to the full-dimensional calculations as “9D”
since all nine intramolecular vibrations are considered. The n—1
propagation is carried out in terms of the Cartesian coordinates ||* = Zod)n(zi)z (22)
for the atoms. At every time step the Euler angles describing ES
the orientation of the molecule are calculated, the normal mode
eigenvectors are rotated accordingly, and values for the normalThe amplitudes are propagated in time using the matrix equation
mode coordinate€), and conjugate momentg,, are obtained. )
This procedure allows us to compute classical mode-resolved ihd(t) = (W() + T)d(t) (23)
vibrational energies, but in addition we can distribute grid points . o . . )
around the classic&) values and treat the normal coordinates 1€ potential matriXW is diagonal in the grid representation
quantum mechanically within the time-dependent Gauss and obtained by subtra(;tlng thg first and second derlvat}ve terms,
Hermite discrete variable representation method. The method€valuated at the classical trajectory, from the potential at the
has been described in detail by Billing (see, e.g., refd®. specific grid point
Below follows a brief summary of the equations used in the N
calculations. W{Q.}) = V{Q.}) — m
For each degree of freedofy,treated quantum mechanically ki ki kZlan
an odd numberry, of points, Qy;, are distributed around the

Q(t)(Qk,i - Qk(t)) -

2

N
classical valueQx(t) (the midpoint d
RO the midpont) > @ QY (@9
Qu = + A (15) e
i = Q) +Z, o T— =
2ImAQ where the derivative terms are given by (= 1 in our case)
wherez are the zeros of theith Hermite polynomialH,,(&). PV )
The rootsz are found using the algorithm suggested by Billing. 5 = —P(1) (25)
The quantityA, is a parameter defining the width of the Gatss K
Hermite basis functionsp,, which have the general form Py; )
—=4(ImA)“/ 26
e i 2 (Im A)“/my (26)
Y@ ) =7 xB{H ) + PO~ Q) +

P The first derivative in eq 25 is the classical force, and the
ReAD(Q~ Q1) ]}¢n(§' H (16) equation is simply one of the classical equations of motion. Since
we do not integrat€y andPx explicitly (the calculation proceeds
in Cartesian coordinates) we prefer to determine the derivative
1 5 from the time dependence Bf using numerical differentiation.
#n(§, 1) = ———=H,(§) exp(=£72) (17) The accuracy of the method has been checked by comparison
V2" with explicit evaluation of the gradient of the potential with
respect to the normal coordinates using the chain rule. For simple
cases the explicit method is as easy to use as numerical
differentiation, but for more general cases (involving rotation)
£=y2ImAOMQ — QD) (18) the latter method is much simpler. The second derivative in eq
26 is not equal to the corresponding classical quantity. The
effective forces,V' and V", are in principle arbitrary® The
particular choice ofV' (combined with the requirement that
h ReA(0) = 0) guarantees that the width parameterAgis time-
Imy(t) = — 2 In(2 Im A(t)/h) 19) independent, i.e., the grid points follow the classical trajectory
with constant separation between the points. The kinetic
Since the transition probabilities do not depend on the phasecoupling matrixT is sparse. The elements, which couples grid

where

The time dependence follows from the relation

The GaussHermite functions are orthonormal if we require
that
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points {,j) in modep are given by however, notice that the maximum stable propagation time
L seemed to be correlated with the number of grid points.
Alm Ap 1 " Following the transition probabilities as a function of time we

Tiojo = |_| Ogaie™—— Zo¢n(zi)(2n + 1)¢n(2) observed that reasonable values were obtained immediately after

=P ALY Lyl the collision but that the probabilities started to behave erratically

S (27) if the propagation continued for too long. Increasing the number

of recursions or decreasing the time step did not improve the

wherek@, 1@ denotes two grid points in modg An algorithm situation. Adding grid points, however, removed the oscillations
for the evaluation of the action @f on the vectod is given in in addition to improving the accuracy of the probabilities

ref 16. We have tested our implementation of the algorithm in optained. The same behavior was observed for th@C§ystem
two dimensions, where explicit expressions are easy to write but did not pose a problem once we were aware of it. In all
down?? The solution to eq 23 can formally be written as calculations presented we used the width parametedylm

. 0.0591 d/fs (remember that the normal coordinates are mass-

d(t + At) = eXF(— l(W(t) + T)At) d(t) (28) weighted). A peculiarity of the GIBr system is that for some

h but not alt—collisions we observe small unphysical oscillations
in the transition probabilities. The oscillations were found to
coincide with high classical kinetic energy in the vibrations.
We therefore monitor this energy term and limit the projection
to times when the kinetic energy has a minimum.

The fact that the matrix is diagonally dominant suggests the
splitting??

d(t + A = exp(— thE(t)At) exp(— %cm)

exp(— iE(t)At) d(t) (29) 3. Results and Discussion
3.1. Scattering from a Cold Surfaceln this section classical
where the diagonal matri containsW and the diagonal part ~ and quantum results obtained using the reduced dimensionality

of the kinetic couplingT, whereas the nondiagonal part of the formulation are compared for a few specific initial molecular

kinetic coupling is stored if€. The Lanczos methddis then orientations. Three of these are particularly interesting since only
used to propagate the vector ay vibrations are excited due to symmetry constraints. The results
) obtained therefore correspond to a full-dimensional dynamical
exp(— LE(t) At) d(t) (30) treatment. For these cases we have also carrle_d out calculations
2h using the TDGH-DVR method. A zero K graphite surface was

used in order to minimize the effects of thermal fluctuations.
The translational energy was 2.0 eV (corresponding to 1615
m/s) and the initial velocity vector was along the surface normal.
The initial orientations are the same as in ref3i§ the angle
between the €Br vector and the surface normal):

(i) the Br and C atoms are centered above a six-membered

using the matrixC.

The classical trajectory is initialized without vibrational
energy which corresponds @ = 0 andPx = 0. Grids are set
up for those modes/§, v,, andv; in the present study) treated
guantum mechanically, and initial quantum amplitudes are
calculated from eq 21 using harmonic oscillator eigenfunctions. . . D
The classical equations of motion and the solution to the ring with the F atoms pointing down toward carbon atoids (

guantum problem are propagated simultaneously. The vibra- — O ); .
tional energy in the modes treated quantum mechanically is (i) the F atoms are approximately above the carbon atoms
obtained by projecting the wave function onto asymptotic with the C and Br atoms centered above a six-membered ring

eigenstates. The amplitude corresponding to a final state@nd the Bratom turned downwar® (= 180°);

characterized by the quantum numbgrg is obtained as (iii) the Br and C atoms are centered above a surface carbon
atom with the Br atom closest to the surfaég £ 180°);
ALY N gyfk(Qkyi) (iv) the molecule is positioned above a six-membered ring
A,y = (—) (ﬂ|m Ak)*l’4 Z ﬂ— and tilted 45 such that two F atoms are closest to the surface
2 - ifin k= \/? (0 = 45°).
|

. As shown in Figure 2 the agreement between the classical
I trajectory (initialized without vibrational energy) and the
exr{gng(t)(Qk’i B Qk(t))) dil'izv---jN (31) quantum wave packet (initially in the ground state) is indeed
B very good. Case iv is an example where the molecule impacts
The probability is given byP;,, = |a.4 2 the total vibrational at an angled geometry, which is the generic case when we later

energy is obtained as sample over initial orientations. Obviously, such an angle will
not only excite modes o3, symmetry. The TDGH-DVR
Ep = zE{”}P{”} (32) scheme, _which includes also the _other_ six modes (classically
7 B treated), is no longer on equal footing with the 3D wave packet

treatment, and the corresponding energy transfer is therefore
and the mode-resolved energies, finally, are found using egsnot included in Figure 2. The TDGH-DVR results presented
12—-14. are obtained using a very small grid: ¥59 x 7 points forvs,

We have tested our implementation of the TDGH-DVR v, andvy, respectively. The results are still quite good, which
subroutines on the problem of rotational excitation in thetHe is also shown in Table 1 where the energy partitioning between
H, system considered previously by Billifg2 The results are  the modes is presented for case i. The excitation is unusually
not sensitive to the time step or the number of Lanczos large for this collision, and it is therefore a suitable test case.
recursions. Values between 0.1 and 0.5 fs together with five The TDGH-DVR result presented is an average computed
recursions using the split-Lanczos method is sufficient. We did, between 0.65 and 1.00 ps.
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Figure 2. Vibrational excitation energy as a function of time for initial molecular orientations (i), (ii), (iii), and (iv). Results are shown for different
dynamical treatments: 3D classical (solid line); 3D wave packet (dotted line); 3D TDGH-DVR (filled circles).

TABLE 1: Excitation Energies of the a; Modes for Initial

Orientation (i) Obtained Using a Full-Dimensional Classical

Trajectory (CM9D), Classical (CM3D) and Wave Packet
(WP3D) Reduced Dimensionality Treatments, and the

TDGH-DVR Method with the a; Modes Described Quantum

Mechanically (GH3D)

AEvib/meV

method V3 V2 V1

CM9D 100.7 7.8 0.8

CM3D 100.8 7.9 0.8

WP3D 104.9 5.4 0.2

GH3D 103.0 5.5 0.9
TABLE 2: Excitation of the v3 Mode for Initial
Orientation (i) 2

n GH WP

0 8.11x 102 8.14x 102

1 2.03x 101 2.01x 10!

2 2.48x 1071 2.45x 101t

3 2.00x 101 1.99x 101

4 1.18x 101 1.21x 10!

5 5.40x 102 5.90x 102

6 2.01x 102 2.43x 102

7 6.21x 1073 8.61x 1073

a Transition probabilities from the ground state (0, 0, O)ripQ, 0)
obtained using the TDGH-DVR (GH) and wave packet (WP) methods
are shown.

The quantum mechanical transition probabilities for excitation
of the dominating’s mode are shown in Table 2. The agreement
between the wave packet and the TDGH-DVR results is quite
good. Investigation of cases ii and iii shows that this is true for

these collisions also, provided that the probabilities are larger

than about 103,
The almost total lack of effects due to a quantum treatment
of the vibrations is in agreement with our previous 2D resllts.

TABLE 3: Excitation Energies (in meV) of the a; Modes for
Initial Orientation (i) @ Obtained Using Classical Trajectories
(CM) and the TDGH-DVR Method with the a; Modes
Described Quantum Mechanically (GH)

CM GH
f V3 V2 V1 V3 V2 Vi
1.00 206 47 43 196 44 32
0.50 236 26 5 248 22 4
0.25 & 2 0 91 3 1

aThe collision velocity was 2798 m4 and the C, F, and Br masses
were scaled by a factdr

and 1.5 eV, respectively. Lowering the masses increases the
normal mode frequencies by a factor of and 2, respec-
tively. For this study we used a grid consisting of 2121 x

21 points in the TDGH-DVR calculations in order to improve
the accuracy of the projection. The classical results are obtained
using the full-dimensional molecular dynamics program, i.e.,
the classical and TDGH-DVR trajectories are identical in all
respects. The initial orientation of the molecule was given by
case i, and the three doubly degeneeaeodes were therefore
not excited. The result is shown in Table 3. For this high
collision velocity the instantaneous excitation at impact is very
high—over 1.3 eV foif = 1. Neither the classical nor the TDGH-
DVR estimates of the mode-resolved energy transfer are
expected to be very accurate for these collisions, but it should
be possible to see trends. Hor 1 quantum mechanics seems
to lower the excitation of the; mode. Decreasing the mass (

= 0.5) change$, and#; to 1078 and 1534 cnt, respectively,
making them less accessible to excitation. The low-frequency
mode at 498 cm! now absorbs more energy yielding a total
excitation similar to the case d¢f= 1. A tendency to lower

Using the TDGH-DVR scheme as reference method we have excitation of the high-frequency modes in the quantum case is
investigated whether quantum effects become more pronouncecPbserved. A further decrease of the mass=(0.25) changes
for molecules of lower mass. This was done by artificially the frequencies to 704, 1524, and 2170 ¢mvhich has a strong

scaling the C, F, and Br masses with a fadtdirst a factor of
2 (f = 0.5) and in a second step a factor off4<0.25). The
collision velocity was now increased to 2798 m/s in all three

effect on the total energy transfer. The excitation ofithenode
decreases by a factor of 2.7 both in the classical and the quantum
cases, and the excitation of the high-frequency modes is

cases corresponding to translational energies equal to 6.0, 3.0negligible.



8770 J. Phys. Chem. A, Vol. 108, No. 41, 2004 Markovic and Bak

70 T T T T T
50
60 E
S 40t
5
50 k :.., a0 |
3 g
g 4or T W 20 |
~ <
2
W 30 - 1 10t
20 + - 0 . . . L .
400 600 800 1000 1200
10 _ To/K
0 1 1 1 1 1 10 L
400 600 800 1000 1200
Ts/K > 8l
0.25 T T T T T £
A 6
(b) 3%
0.20 B u 4 -
o 2r
S
W 0.15 1 . ‘ . . . .
’>?~: 400 600 800 1000 1200
Z Ts/K
2ot ] s/
< 16 F
0.05 - 4
> 12
Q
£
0 L 1 L L 1 :;
400 600 800 1000 1200 g 087
Ts/K ol
<
Figure 3. Surface temperature dependence of the energy transfer. In 0.4
(a) the total vibrational excitation of the andv; modes is shown for
classical calculations in 2D (triangles); 3D (diamonds); and 9D
(squares). In (b) the ratio between the excitatiorvpfind the total 0 - ’ ;
excitation of thev, andvs modes are shown. The error bars correspond 400 600 800 1000 1200
to 95% confidence intervals. Ts/K

Figure 4. Average energy transfer as a function of surface temperature
3.2. Surface Temperature Dependencen our previous obtained using the 3D reduced dimensionality model. Classical results

papef we also investigated the energy transfer tos@F as open diamonds and wave packet results as filled diamonds for the

. . . . v3 mode (a); thev, mode (b); and thes, mode (c). The error bars
scattering from graphite at different temperatures. Comparison correspond to 95% confidence intervals.

between classical results obtained using full-dimensional and ) _
reduced dimensional calculations showed differences regarding The above comparison shows that the 3D reduced dimen-
the distribution of energy between thgandv, modes. Thisis ~ Sionality model accurately describes the classical dynamics of
an effect of the umbrella Hamiltonian used in our previous work. the2a modes in CEBr. The mode-resolved energy transfer is
The C—F stretchesi(,) are indeed stiff vibrations which are compared to results from 3D wave packet calculations in Figure
excited to a very small extent, but by including the Emotion 4. The quantum results are averaged over 1000 wave pacl_<ets
in the dynamical description, the, mode becomes more for each temperature. As expected from the result§ in sectlon
accessible to excitation. The classical 2D results are compared3'l the agreement between the quantum and classical results is
with the present 3D results in Figure 3 together with the good. Ex0|ta(tj|onhof the;s mode dgm|lnate_s tlhe en?rgy translfer

. . ; . rocess, and the quantum and classical results are almost
corresponding data from full-dimensional (9D) calculations. The P d

. . X identical for this low-frequency mode, Figure 4a. The linear
results are based on 2000 directly scattered trajectories perdependence on the surface temperature is in agreement with

temperature. The initial translational energy was 2.0 eV (normal ¢,;i_dimensional trajectory results and experimental daFae

incidence), the initial rotational energy sampled from a 200 K energy transfer to the high-frequency modes is much smaller:
distribution (random initial orientation), and the trajectories were .. is 3 factor of 4-8 belows, and thev; mode is a factor of

initialized without any vibrational energy. Figure 3a shows that 30—100 times smaller.

the total energy transferred to the andvs modes is almost The present reduced dimensionality results can, of course,
identical for the 2D and 3D calculations, whereas the corre- not be directly compared to experimental data. The agreement
sponding 9D result is somewhat lower. This is expected due to hetween classical and quantum mechanical energy transfer
the presence of seven other vibrations which act as shock(Figures 2 and 4 and Table 1) for frequencies in a range from
absorbers. The fraction of vibrational excitation energy going 303 cnt?! to 1085 cni?! strongly supports the use of classical
into thev, mode is for the 3D model in almost perfect agreement mechanics for the 3D reduced dimensionality model. Further-
with the 9D result, as shown in Figure 3b. more, as implied by Figure 3 and Table 4 this is likely to carry



Scattering Dynamics of GBr

TABLE 4: Mode-Resolved Vibrational Excitation of CF3Br
Colliding with an 800 K Graphite Surface at 2.0 e\#

AEvib/meV
mode vlem™t CM9D CM3D WP3D
ve(€) 302.7 55.3
va(ay) 352.1 29.5 34.6 38.1
vs(€) 547.4 21.9
vo(ay) 762.0 6.1 6.8 5.8
vi(ay) 1084.8 0.9 0.7 0.6
va(€) 1208.8 1.4

a Comparison of full-dimensional classical calculations (CM9D) with
classical (CM3D) and wave packet (WP3D) results includingahe
modes.

over to the full 9D treatment which is in fair agreement with
experimental result$® Out of the nine vibrations the three with
frequencies below 353 criaccount for 74% of the excitation
(evenly distributed with ca. 28 meV per vibration). According
to the analysis of the; mode, Figure 4, these should behave
very classically. About 19% of the energy ends up in the
vibrations which we also expect to be well described classically.
Judging from Figure 4y, andv; may show a small quantum
effect, but these modes only account 6% of the total vibrational
excitation. Only 1% of the energy ends up in the highest
frequency vibrationsif).

4. Conclusions

The vibrational excitation of G§Br in collisions with graphite
has been studied using mixed quantuctassical methods. A
previously investigated reduced dimensionality treatment of the
CFRBr intramolecular dynamics has been extended to include
all three totally symmetric vibrations. Addition of the high-
frequencyv; mode (C-F stretch) has a small effect on the total
excitation, which is dominated by energy transfer toithemode
(C—Br stretch). Removing the constraint of fixed—€ bond
lengths significantly affects the excitation of the(umbrella)
mode.

Mixed quantum-classical calculations employing the reduced
dimensionality model has been carried out using a 3D wave
packet approach within a mean-field approximation. Compari-
sons of the quantum energy transfer with the corresponding
results from classical trajectories initialized without vibrational
energy show a remarkable agreement, in particular for the low-

frequency mode, but the agreement is quite good even for the
two higher frequencies. The present results reinforce our earlier

conclusion that vibrational excitation of polyatomic molecules
in their vibrational ground state can be well described using
classical mechanics.

In this work we have also considered an alternative approach
the TDGH-DVR, or quantum dressed classical mechanics
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method. Using rather modest basis sets (few DVR points) we
obtained values for the energy transfer in good agreement with
the wave packet results. We also used the TDGH-DVR method
to investigate how lower molecular mass affected the agreement
between quantum and classical mechanics. No significant
guantum effects were observed even for vibrational frequencies
in the range of 7042170 cnt! indicating that classical MD
may suffice also for lighter molecules.

When the TDGH-DVR method is used, all degrees of
freedom are included, treated either classically or quantum
mechanically. The artificial dynamical constraints connected
with reduced dimensionality methods are not needed, and the
quality of the quantum mechanical treatment of a particular
degree of freedom can be adjusted for optimum efficiency. For
bound systems the number of grid points required to obtain
reasonably accurate results is surprisingly small due to the fact
that the points follow the classical trajectory. These are very
attractive features which deserve to be investigated in more
detail.
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